Grant W. Brown
Professor
BSc, University of British Columbia, 1987
PhD, University of California, Los Angeles, 1993
Postdoc, Johns Hopkins University School of Medicine, 1993-1999
Address | Donnelly Centre, Room 1206 160 College Street Toronto, ON M5S 3E1 |
Lab | Grant W. Brown Laboratory |
Lab Phone | 414-946-5774 |
Office Phone | 416-946-5733 |
grant.brown@utoronto.ca |
Grant received his Ph.D. in Molecular Biology from UCLA where he worked in Dan S. Ray’s lab studying DNA replication in the trypanosomatid C. fasciculata. His postdoctoral fellowship was at the Johns Hopkins University School of Medicine in Baltimore with Tom Kelly, where he studied regulation of S phase in fission yeast. He has been at U of T since 1999, Associate Professor since 2004, and Professor since 2011.
Social Media
LinkedIn
ResearchGate
Google Scholar
In the News
Research Lab
My lab is on the 12th floor of the Donnelly Centre, a modern, multi-disciplinary and collaborative research institute on the U of T campus. We use functional genomics techniques, including genetic interaction screens and high-throughput cell biology, to study how eukaryotic cells transmit high fidelity copies of the genome from one generation to the next. Maintaining the integrity of the genome is central to biology, and is relevant to cancer, aging, and stem cell renewal.
My graduate students and postdoctoral fellows have backgrounds in biochemistry, genetics, cell biology, and computational biology. And small appliance repair.
Learn more: Grant W. Brown Laboratory
Research Description
DNA Replication, DNA Damage and Genome Instability
We study how cells maintain genome stability. Cells sustain thousands of DNA lesions every day from internal sources, including oxidative damage, replication errors and replication fork collapse, and from outside sources such as radiation and chemical agents. DNA damage and defects in DNA replication are a major source of genetic rearrangements that can cause cancer and aging, and even impact stem cell renewal. Additionally, DNA damaging agents see considerable use as therapeutics, particularly in cancer treatment. We combine high-throughput screens for global identification of genes and pathways that contribute to the DNA damage response with detailed molecular biological and biochemical analysis of pathway components in order to understand how cells respond to DNA replication stress and repair different types of DNA damage.
We use the budding yeast Saccharomyces cerevisiae, and mammalian cells, as models in which to study DNA replication, the DNA damage response, and genome instability. Genetic studies of the cell cycle in yeast have identified many proteins involved in regulating progression from G1 phase into S phase, proteins involved in the DNA damage response, and proteins important for genomic stability. The highly conserved nature of these processes makes study of the yeast cell cycle directly relevant to higher eukaryotes, including humans. The ease of genetic manipulation in yeast makes this model system ideal for introducing changes into proteins and examining the effects of these changes on cellular processes. Functional genomic and proteomic approaches are well established in yeast and provide a means of studying these processes on a genome-wide scale. As the system becomes more tractable, we pursue similar approaches in human cells.
Courses Taught
BCH 2130H Cancer Biology and DNA damage
BCH2024H Select Topics in Cancer Biology and DNA Damage
BCH374Y1 Research Project in Biochemistry
BCH473Y Advanced Research Project in Biochemistry
BCH478H Advanced Biochemistry Lab
Publications
View all publications on PubMed