Dr. Shana Kelley

Dr. Shana Kelley

As reported Sept. 27 in Nature Nanotechnology, the research groups of Shana Kelly and Ted Sargent have used nanomaterials to develop an inexpensive microchip sensitive enough to quickly determine the type and severity of a patient’s cancer so that the disease can be detected earlier for more effective treatment. Their new device can easily sense the signature biomarkers that indicate the presence of cancer at the cellular level, even though these biomolecules – genes that indicate aggressive or benign forms of the disease and differentiate subtypes of the cancer – are generally present only at low levels in biological samples. Analysis can be completed in 30 minutes, a vast improvement over the existing diagnostic procedures that generally take days.

“Today, it takes a room filled with computers to evaluate a clinically relevant sample of cancer biomarkers and the results aren’t quickly available,” said Shana Kelley, a professor in the Leslie Dan Faculty of Pharmacy and the Faculty of Medicine, who was a lead investigator on the project and a co-author on the publication. “Our team was able to measure biomolecules on an electronic chip the size of your fingertip and analyse the sample within half an hour. The instrumentation required for this analysis can be contained within a unit the size of a BlackBerry.” Conventional, flat metal electrical sensors were inadequate to sense cancer’s particular biomarkers. Instead, they designed and fabricated a chip and decorated it with nanometre-sized wires and molecular “bait.” “Uniting DNA – the molecule of life – with speedy, miniaturized electronic chips is an example of cross-disciplinary convergence,” said Sargent. “By working with outstanding researchers in nanomaterials, pharmaceutical sciences, and electrical engineering, we were able to demonstrate that controlled integration of nanomaterials provides a major advantage in disease detection and analysis.”

“We rely on the measurement of biomarkers to detect cancer and to know if treatments are working,” said Dr. Tom Hudson, president and scientific director of the Ontario Institute for Cancer Research. “The discovery by Dr. Kelley and her team offers the possibility of a faster, more cost-effective technology that could be used anywhere, speeding up diagnosis and helping to deliver a more targeted treatment to the patient.” The team’s microchip platform has been tested on prostate cancer, as described in a paper published in ACS Nano, and head and neck cancer models. It could potentially be used to diagnose and assess other cancers, as well as infectious diseases such as HIV, MRSA and H1N1 flu.

Reprinted from NEWS @ U of T, by Elaine Smith